Small Business Innovation Research/Small Business Tech Transfer

Three Dimensional Situational Awareness Sensor to Assist Descent and Landing of the Mars Lander Spacecraft, Phase I

Completed Technology Project (2012 - 2012)

Project Introduction

In order to address NASA's needs identified in the RFP, TetraVue proposes the use of a unique, non GPS and non-observer position dependent 3D sensor system to achieve both high lateral and depth resolution during the landing phase of the EDL. The system uses a nanosecond-class laser strobe to illuminate the scene and capture the 3D data in a single shot and is thus insensitive to motion of the observe or the scene. The approach can utilize off-the-shelf focal plane arrays to acquire high resolution, 3D data for a rapid and accurate craft landing and topographical hazard assessment. Phase I will result in a laboratory demonstration of TetraVue's technology to address the speed and range requirement of the program and bring the TRL level from 3 to 4. Phase II will demonstrate a breadboard prototype capable of performing demonstration experiments with realistic mission parameters and bring the TRL level from 4 to 5.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Tetravue	Lead Organization	Industry	San Marcos, California
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Three Dimensional Situational Awareness Sensor to Assist Descent and Landing of the Mars Lander Spacecraft, Phase I

Table of Contents

1
1
2
2
2
2
3
3

Small Business Innovation Research/Small Business Tech Transfer

Three Dimensional Situational Awareness Sensor to Assist Descent and Landing of the Mars Lander Spacecraft, Phase I

Completed Technology Project (2012 - 2012)

Primary U.S. Work Locations

California

Project Transitions

February 2012: Project Start

(

August 2012: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139502)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Tetravue

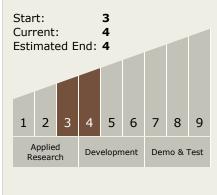
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Bodo Schmidt

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Three Dimensional Situational Awareness Sensor to Assist Descent and Landing of the Mars Lander Spacecraft, Phase I

Completed Technology Project (2012 - 2012)

Technology Areas

Primary:

- TX09 Entry, Descent, and Landing
 - └ TX09.4 Vehicle Systems
 - ☐ TX09.4.4 Atmosphere and Surface Characterization

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

